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Highlights
Agricultural weeds constitute an original
model to understand the impact of
anthropogenic changes on ecological
and evolutionary dynamics.

A combination of environmental factors
in cultivated fields has driven the selec-
tion of novel functional trait combinations
in agricultural weeds. Therefore, agricul-
tural weeds can be considered as rule
breakers of ecological and evolutionary
laws.
Establishing laws of plant and ecosystems functioning has been an overarching
objective of functional and evolutionary ecology. However, most theories neglect
the role of human activities in creating novel ecosystems characterized by species
assemblages and environmental factors that are not observed in natural systems.
We argue that agricultural weeds, as an emblematic case of such an ‘ecological
novelty’, constitute an original and underutilized model for challenging current
concepts in ecology and evolution. We highlight key aspects of weed ecology
and evolutionary biology that can help to test and recast ecological and evolu-
tionary laws in a changing world. We invite ecologists to seize upon weeds as a
model system to improve our understanding of the short-term and long-term
dynamics of ecological systems in the Anthropocene.
Weeds in cropped fields are particu-
larly valuable for assessing the con-
sequences of out-of-equilibrium and
transient dynamics on community
assembly.

Weed herbicide resistance and crop
mimicry syndromes represent some of
the best-documented examples of
rapid evolution in plants and provide a
promising context for the study of eco-
evolutionary feedbacks.
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Novelty as a Challenge
Ecologists and evolutionary biologists have always sought repeated patterns that reveal the uni-
versal laws of biological function and diversification. Several general theories have been proposed
to define the ecological and evolutionary processes that explain diversity within and across levels
of organization, and also across temporal and spatial scales. However, these theories are mostly
inspired by natural or semi-natural ecosystems, and theoretical models are developed under
idealized conditions such as population equilibrium or non-limiting resource conditions for plant
growth. These theories largely neglect the role of human activities in creating novel ecosystems
with original species assemblages and environmental factors. Such ‘ecological novelties’ repre-
sent new frontiers of knowledge and create opportunities to challenge widely accepted theories
[1], which, in line with Popper’s view of science, is a key aspect of the development of theory.

The emergence of agriculture during the Neolithic period is perhaps the most widespread
example of a driver of novel ecosystems. It created new habitats for numerous plant species
[2] (so-called agricultural weeds) which now cover N40% of the terrestrial surface [3]. At the
scale of the cropped field, weed communities represent melting pots of plant species with various
biogeographic and ecological backgrounds and whose local assembly results as much from the
movement of crops and civilizations as from ecological rules (Box 1). In addition, agricultural prac-
tices result in environmental conditions that are distinct from conditions in non-cultivated habitats,
notably in term of disturbances and resource gradients (Box 2). Mechanical and chemical
weeding also impose highly specific and strong selection pressures on weed communities [4].
New species combinations and environmental factors in cultivated fields can, therefore, lead to
new forms of ecological and evolutionary dynamics that are difficult to capture using well-
established theories.

In this reviewwe argue that weeds in cropped fields provide a valuable but underutilizedmodel for
challenging conceptual foundation stones in both ecology and evolution in the context of the
current era that is characterized by rapid, human-mediated change [5]. We discuss how our
understanding of the short-term and long-term diversification and dynamics of ecological
systems should benefit from the study of weeds. In turn, better knowledge of weed ecology
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Box 1. How to Become an Agricultural Weed?

Three roads can lead a plant species to become a weed: invasion of fields by wild species, crop–wild hybridization, and
crop dedomestication [72,92].

First, crop domestication during the Neolithic resulted in the construction of a new human-made ecological niche – the
agricultural fields in different parts of the world [93]. At this moment, and in each center of plant domestication, numerous
locally preadapted plants were able to colonize cultivated fields [94]. These proto-weeds probably evolved locally according
to the man-made selective pressures (the first agricultural practices) over millennia because plant cultivation started long
before crop domestication, at least in the Levant [95]. Some of these species still exist in both cultivated and non-cultivated
habitats (i.e., apophytes), whereas others such as Lolium temulentum, Bromus secalinus, Agrostemma githago, and
Vaccaria hispanica are only known in agricultural habitats (i.e., anecophytes).

Second, the expansion phase of agriculture has then carried out secondary contact among previously isolated populations
or species, both domesticated and wild, generating admixture or hybridization [96,97]. Hybridization has triggered the
emergence and diversification of many emblematic weed species such as Capsella bursa-pastoris [98], Veronica persica
[99], and Chenopodium album [100]. Moreover, during the expansion phase, preadapted plant species from the newly
cultivated areas could enter the field, thereby adding new species [2].

Finally, some contemporary weed species are the result of dedomestication from cultivated ancestors (e.g., weedy
rice, Oryza sp. [101]; weedy radish, Raphanus sp. [102]). By definition, these feral species are highly adapted to early
agricultural practices. This can explain why these weed species are notoriously the most problematic in contemporary
farming [102].

These various processes make modern weed communities a unique assemblage of species with diverse biogeographic
origins and evolutionary histories.

*Correspondence:
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and evolutionary biology should help to explain and predict their dynamics in cultivated fields,
which will be necessary to develop innovative weed management schemes that consider both
the services (e.g., pollination [6,7]) and disservices (e.g., yield loss [8,9]) provided by weeds [10].

Ecological Outliers: Why and How Can Weeds Challenge Functional Ecology
Functional ecology has long been searching for repeated patterns in the phenotypic diversity of
life [11–14]. These patterns reflect the existence of common physiological and biophysical
constraints that structure the ‘phenotypic space’ of organisms and govern their ability to adapt
to novel environments [13,15]. They are at the basis of major theories in functional ecology and
macroecology [12,16,17]. For instance, in plants, the leaf economics spectrum describes leaf
covariation of physiological and morphological traits that emerge from evolutionary tradeoffs
between resource-acquisition and resource-conservation strategies [18]. Most plant species
seem to fall along this physiological tradeoff [17]. However, these phenotypic patterns mostly
Box 2. Environmental Gradients in Cultivated Fields

Environmental conditions in cultivated fields include both local pedoclimatic conditions and farming practices. Farming
practices such as tillage and weeding correspond to major disturbance events in arable fields [60]. Crop phenology
(e.g., sowing date, harvest date) notably determines the timing of disturbance, and herbicide intensity and tillage depth
dictate the intensity of disturbance. In addition, the soils of cultivated habitats are extremely rich in resources because
fertilization and irrigation provide large amounts of nutrient and water. Although fertilization and irrigation mostly benefit
the crop species, the amount of nutrient and water supplies are such that they remain largely non-limiting for weeds
[103]. By contrast, the amounts of space and light that are available for weeds are strongly limited by the presence of
the crop species that produce most of the standing biomass in agricultural fields. The amount of aboveground resources
that are preempted by the crop varies according to crop height, lateral spread, and sowing density [104].

The rapidmonopolization of space and light by one species in a regularly disturbed habitat is specific to cultivated fields [4].
In non-cultivated ecosystems, disturbance releases resources by destroying biomass, and regularly disturbed habitats
generally show high levels of resource availability [105]. By contrast, in cultivated fields, crop characteristics are more
important than disturbances in dictating the amount of resources that are available to weeds, and the positive covariance
between disturbance and resource gradients no longer exists. Finally, the succession of different crop species and asso-
ciated farming practices within a field (i.e., crop sequences) causes major year-to-year changes in both disturbance and
resource availability [60].
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rely on correlative approaches and, as such, a comprehensive falsification framework is lacking
for most of them [19]. Testing the robustness of these laws would allow validation, or not, of
the existence of universal ecological, evolutionary, physiological, and biophysical constraints for
all taxa on Earth [20,21].

Agricultural weeds appear to be good candidates for testing whether organisms can overcome the
constraints and tradeoffs that determine these patterns, and consequently whether (natural or
artificial) selection can act against them [15,22]. Recent comparative analyses of taxa spanning
continental and global scales show that weeds are located at the margins of the functional
space defined by national and global floras [23,24]. Such a position makes them potential
‘functional outliers’, in other words species that are functionally distinct from the rest of the global
pool of species [25]. In addition, weed species are expected to have greater phenotypic plasticity
than non-weeds [26,27], particularly for traits related to reproduction – allowing life-cycle comple-
tion under variable conditions [28–30]. Being at the margins of the plant functional space and
having a high level of phenotypic plasticity are two key ingredients for weeds to eventually over-
come ecophysiological and biophysical constraints that are assumed to limit the diversification of
life (Figure 1A).

The possibility of novel trait combinations in weeds reflects the unique environmental conditions
that characterize the cultivated fields. For instance, enclosed fields and the use of pesticides
remove top-down regulation of plant communities by invertebrate and vertebrate herbivores in
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Figure 1. Whether and How Weed Species Can Break Functional Ecology Rules: Theoretical Expectations
(A) Functional ecology has highlighted cross-taxa trait–trait relationships that mirror the physiological and biophysiologica
constraints during the diversification of life. For instance, the leaf economics spectrum describes a tradeoff between
photosynthetic rate (trait Y) and leaf lifespan (trait X) among many plant species [16]. Each grey dot represents a differen
species. Weed species have been characterized as functional outliers because they were located at the margins of the
multitrait space (so-called functional space) in recent cross-taxa comparative studies. In addition, weed species are
expected to display high phenotypic plasticity, which can help them to overcome the envelope of constraints imposed by
functional ecological laws. (B) The CSR (competitor species/stress-tolerant species/ruderal species) theory delineates a
triangle of tenable strategies of species based on the characteristics of the habitat where they live, namely resources and
disturbances. However, when decoupling resources into aboveground and belowground resources to account for the
levels of resources that are available for weeds, weeds might be considered as functional outliers in this untenable triangle
Indeed, they undergo high levels of disturbance and also have access to high belowground resources, but low
aboveground resources, owing to major depletion of light availability by the crop species. Such imbalance between
belowground and aboveground resources is not considered in the traditional CSR model.
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cropped fields. The removal of natural herbivory in cropped fields can therefore change the
underlying constraints that determine the leaf economics spectrum (resource acquisition vs con-
servation [18]). Moreover, the novel combination of disturbance and resource levels in agricultural
fields (Box 2) might have selected for weed ecological strategies that differ from the ones
observed in natural ecosystems. According to the CSR model (see later), the combination of
disturbance and resource gradients shape three primary plant ecological strategies that explain
the diversity of the whole flora [31]. A high level of resource availability and a low level of distur-
bance select for species that display a combination of traits that make them good competitors
(‘competitor species’, C). ‘Stress-tolerant’ (S) species occur where both resource availability
and disturbance levels are low, whereas ‘ruderal’ (R) species are adapted to habitats where
both resource availability and the levels of disturbance are high. Finally, no trait combination
allows species to persist in environments where the level of disturbance is high and resource
availability is low [31]. Intriguingly, the CSR scheme has been built on habitat characteristics
where species are found, not on the levels of resources and disturbance that are actually per-
ceived by the organisms. This approach may be limited in seeking to understand the functional
ecology of agricultural weeds that occur in habitats characterized by high levels of resources
and disturbance but that also experience severe resource depletion, notably in light, the latter
being largely preempted by the crop species that is artificially dominant (Box 2). Agricultural
weeds thus face repetitive disturbances in the context of strongly imbalanced resource ratios
[32]. This extreme situation is not considered in the traditional CSR model where the ability of
species to capture aboveground and belowground resources is assumed to covary along a
stress tolerance–competition gradient (Figure 2B). The exceptional combination of disturbances
and the imbalance of aboveground and belowground resources available for weeds in agricultural
fields thus questions the CSR model that was developed from observations in natural ecosys-
tems. A greater consideration of the effects of imbalanced resource availability on the evolution
of plant ecological strategies will be necessary to better understand the success of weeds in
cultivated habitats.

Functional ecology approaches to studying weeds are in their infancy. Although the ruderal
strategy has traditionally been related to weeds, empirical evidence shows that a wider range
of ecological strategies are also present in weeds [24]. In particular, weeds species show dif-
ferences between those that compete with the crop and those that avoid it, as well as between
species that resist or avoid disturbances [33,34]. These results suggest that the same environ-
mental constraints may select for a variety of ecological strategies that can coexist in the same
TrendsTrends inin PlantPlant ScienceScience

Figure 2. Phenotypic Convergence and Divergence between Wheat and the Common Corn Cockle
(Agrostemma githago). (Left) At the vegetative stage, the common corn cockle is virtually indistinguishable from wheat
(Right) By contrast, floral traits strongly diverge. Photo credit: Guillaume Fried.
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field. Improving the characterization of the whole weed biota through the lens of functional traits
will allow the identification of the species that are able to establish and persist in arable habitats
(the so-called ‘regional pool’ in community ecology). This will inform the profiling of future weed
communities and the assessment of physiological and biophysical constraints that regulate
weed success and their potential to adapt.

Challenging Community Assembly Rules
Weed science has largely focused on understanding the biology and control of individual weeds
infesting cropland. However, plant species do not act independently, and are imbedded in
complex interaction networks, both within and between local communities. This evidence
has motivated the seminal article of Booth and Swanton [35] that calls for a shift from species-
to community-level studies in weed science. Nevertheless, despite an increasing number of
studies addressing weed community assembly, the rules that govern weed community dynamics
remain far from clear, making predictions of the impact of any change in farming practices difficult
(e.g., [36–41]). We argue that this may result from the fact that weed communities display unusual
dynamics that cannot be fully captured by classical ecological theories.

Whether the assembly of ecological communities follows general rules is a fundamental but still
unresolved question in community ecology [42]. One of the most challenging issues is to under-
stand and model the combined influences of stochastic, neutral (i.e., independent from biological
differences), and niche-based (i.e., biotic interactions and environmental filtering) processes on
community assembly [43–45]. According to the stress-gradient hypothesis, competition should
govern community assembly in productive habitats whereas harsh environmental conditions
should filter stress-tolerant species [45]. By contrast, community assembly can be neutral
where both competition and environmental stress are weak, for example after a disturbance
that strengthens the influence of stochastic species recruitment [45]. However, weed communi-
ties occupy habitats where competition, environmental filtering, and stochastic dynamics are all
extremely strong (Box 2). Intense competition arises from a preemption of space and light by
the crop, which strongly reduces weed biomass [46,47]. Abiotic constraints are caused by agri-
cultural practices such as chemical weeding and soil disturbances (i.e., tillage and mechanical
weeding) that filter out species according to their sensitivity to herbicides and to their phenology,
respectively [48,49]. These recurring disturbances further maintain the farmed ecosystem in
the early stages of secondary succession (i.e., dominance of annuals [50]), where stochastic
colonization–extinction dynamics also play an important role ([40,41,51,52]). These dynamics
might, however, shift in no-till systems where the abandonment of ploughing favors more perennial
weed species [7,53]. Weed communities thus represent a combination of transient species, that
rely on repeated colonization from field edges, and resident species adapted to the habitat filters
in the field [52]. Because of the unique combination of niche-based and neutral processes in
cultivated fields, weed communities are particularly valuable for investigating how complex
assembly dynamics govern species persistence and coexistence across spatial scales.

Another crucial issue in the Anthropocene is to predict the responses of communities to anthro-
pogenic environmental changes [54,55]. Spatial variation contributes to species coexistence via
the spatial storage effect [56] that allows less-competitive species to migrate and persist in com-
munities (source–sink dynamics [57]). By contrast, temporal variation can modify the competitive
hierarchy between species, allowing species to coexist over the long-term (i.e., temporal storage
effect [56]). However, ecological theories implicitly assume stationary regimes of environmental
variation such that some coexistence equilibrium is reached at a given time (reviewed in [55]). In
the case of agricultural weeds, this fundamental assumption is violated by abrupt changes im-
posed by changing human activities, which prevent the system reaching any long-term stability.
Trends in Plant Science, November 2020, Vol. 25, No. 11 1111
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Over timescales of decades, the development of new agricultural practices and the abandonment
of ancient practices has strongly affected the dynamics of weed populations as some formerly
rare weeds become more successful and vice versa [49,58]. Similarly, the introduction of new
cultivated species within a region (e.g., rapeseed, sugar beet, sunflower in France) creates
unprecedented environmental conditions that can radically change the composition of weed
communities in only a few years [59]. From year to year, the sequential cultivation of different
crop species within a field also causes large fluctuations of disturbance regimes and competitive
interactions [60]. Such non-stationary environmental constraints should theoretically drive devia-
tions from community equilibrium within an environment at a given time by favoring transient and
delayed species responses (lag response hypothesis [55,61]). This has been verified empirically
with agricultural weeds where temporal dispersal from the dormant seedbank allows the
presence of weed species that reproduced successfully under previous, more suitable conditions
(i.e., temporal source–sink dynamics [38,41,62]). The ability of weeds to colonize novel cropping
environments over short timescales will also be related to the spatial dynamics of introductions of
seed in crops and on machinery, or dispersal from surrounding habitats, involving stochastic
processes and landscape composition [63,64]. Weeds thus represent an exemplary case to
elaborate a 'non-equilibrium' community assembly theory, a theory that is urgently needed to
better understand and anticipate plant community responses to the ongoing global changes [65].

Weeds: Evolutionary Roadrunners?
Although scientists have long assumed that evolution proceeds slowly, an increasing number of
examples of rapid evolution have been documented in wild plant species (e.g., [66,67]). Evidence
of rapid phenotypic and molecular evolution challenges the classical view of the standard model of
population genetics [68]. Furthermore, because ecological and evolutionary timescales overlap,
ecological and evolutionary process are now known to interact, and we need to understand how
evolutionary process can affect population growth rates and ecological dynamics [69]. A better
understanding of rapid evolution and eco-evolutionary dynamics is particularly crucial given that
these phenomena may become increasingly frequent in the Anthropocene [70] owing to the
dramatic acceleration of human-driven ecological changes ('the great acceleration' [5]).

Rapid evolution is particularly frequent in agricultural fields where farming practices have caused
intense but unintended selective pressures on weeds since the Neolithic. The contribution of the
genetic attributes of weeds and their evolutionary dynamics (in terms of mating systems, pheno-
typic plasticity, and many other adaptive traits) to their capacity for rapid evolution in a new
human-made environment have been repeatedly pointed out [2,4,29,71–73]. The evolution of
herbicide resistance is probably the most emblematic and well-documented case of rapid evolu-
tion in plants (reviewed in [74]). Beyond herbicide resistance, rapid evolution can also affect weed
demography by controlling weed–crop and weed–pathogen interactions. For example, Guo et al.
[75] demonstrated the rapid evolution of allelopathy and pathogen resistance in the barnyard
grass (Echinochloa crus-galli) in response to cocultivation with rice and to infection by pathogenic
Pyricularia oryzae, respectively. In addition, many weed species rapidly evolve traits that mimic
the crops to survive the selective constraints historically imposed by the farmers (Vavilovian mim-
icry [76,77]). For instance, there is evidence that populations of Agrostemma githago have
adapted to mimic the size and shape of crop seed to avoid being removed during seed cleaning
[78]. This species is also virtually indistinguishable from wheat during the vegetative stage
(Figure 2), which also probably allows it to escape from manual weeding in traditional farming
systems. Another example is the evolution of the crop mimicry syndrome in Camelina alyssum
(Mill.) Thell. that has led to the weed reducing its phenotypic plasticity [28]. If the evolution of
vegetative or seed traits has been driven by crop mimicry, by contrast weed floral traits may
have become distinct from those of crops owing to divergent selection. For example, Agrostema
1112 Trends in Plant Science, November 2020, Vol. 25, No. 11



Outstanding Questions
Can weed demography be explained
by variation in their functional traits?

How does spatial and temporal seed
dispersal shape weed communities?
How do spatial and temporal variations
of environmental conditions affect the
assembly of weed communities?

How stable are weed assemblages in
the face of the current weed species
extinction?

How has adaptation to the agricultural
niche during agriculture expansion
contributed to the diversification of
regional species pools?

What are the respective influences of
evolutionary and ecological processes
on weed genome size?
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githago produces flowers that are clearly visible among wheat plants – presumably to attract pol-
linators and ensure reproduction at low plant densities in self-pollinating crop stands (Figure 2).
Thomann et al. [79] also reported the evolution of increased capitula size in the cornflower
(Cyanus segetum) in parallel with pollinator decline in the agrosystems of northern Europe during
the 1990s. However, the generalization of contrasting selection pressures on vegetative and
floral traits in weeds, as well as the mechanisms of convergent and divergent evolution, remain
an open question.

The realization that evolution can occur on short timescales suggests the existence of reciprocal
interactions between ecological and evolutionary dynamics [69]. Although a growing number of
studies show that rapid trait evolution can drive ecological dynamics on contemporary time-
scales, there are few empirical evidence of feedback from these altered ecological interactions
on the evolutionary responses of plant communities [80]. Recently, Baucom [74] argued that
weed communities exposed to herbicides provide an attractive system to study such eco-
evolutionary feedback. Indeed, the emergence of resistance boosts the demography of resistant
populations in agrosystems that can in turn affect pollinator communities and disease prevalence.
The resulting changes in biotic interactions between weeds and other trophic levels can in turn
promote the evolution of new weed species traits (Figure 1 in [74]). An important and still
unresolved question here is to identify functional traits that can drive rapid evolution and eco-
evolutionary dynamics. Plant genome size (GS) might be such a trait because it simultaneously
controls evolutionary rates and several important plant functional traits such as plant relative
growth rate and generation time [81,82]. Intriguingly, Bennett [83] reported that GS was smaller
in weeds than in non-weeds, although polyploidy was more common in weeds. This is surprising
given that plant GS positively correlates with the amount of repetitive DNA that results from
hybridization and/or polyploidy (at least soon after such polyploidization events occur [84]).
Antagonistic forces may therefore drive plant GS size and ploidy level in agricultural weeds.

Finally, archeological findings provide both a chronology of agricultural innovations and a parallel
record of associated weed floras from archaeological remains (e.g., [85,86]), making agricultural
weeds remarkable models for understanding the genetic basis of rapid evolution as well as the
evolutionary trajectories of complex traits in natural populations. Progress in ancient DNA
sequencing techniques makes it possible to scan whole genomes of weed historical samples
to detect candidate genes under selection. On a shorter timescale, resurrection ecology [87]
and museum specimen analysis [88] can also be relevant methodologies to investigate weed
trait evolution and its genetic and epigenetic underpinnings over hundreds to a few dozens of
generations. Weeds are particularly useful for this approach because most of these species are
annuals and produce numerous seeds that persist in soil seedbank for decades [89]. Recent
resurrection experiments on weed species have for example revealed rapid evolution of herbicide
and drought resistance, pathogen susceptibility, phenology, floral traits and pollination biology,
and adaptive plasticity [79,87,90]. Coupling resurrection ecology with genome-wide association
mapping will be a key approach for understanding the genetic basis of rapid evolution of multiple
and complex traits in response to documented selective pressures (e.g., [91]).

Concluding Remarks
Understanding the impacts of human activities on ecological and evolutionary dynamics will
require revisiting ecological theories that were initially developed for natural ecosystems (see
Outstanding Questions). Pivotal to this is the integration of reciprocal interactions between
human activities and ecological and evolutionary processes. Because weed evolutionary history
and ecological dynamics are linked intrinsically to human activities, these species have great
potential to become a valuable model in ecology and evolution. Nevertheless, weeds are absent
Trends in Plant Science, November 2020, Vol. 25, No. 11 1113
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from most ongoing efforts of global biodiversity and trait databases, or at least their peculiarities
are not recognized (e.g., owing to lack of vegetation plot data in cropping systems, lack of data on
intraspecific trait variation). We urge (numerical) ecologists not to discard the amazing source of
information emerging from weed species and their associated habitats. Field ecologists might
have also overlooked widespread cultivated habitats compared with rare and emblematic
habitats. However, studying plant community assembly using weed communities is an attractive
prospect given that assembly processes can be more easily identified, deciphered, and quanti-
fied. Finally, weeds, in virtue of their short life cycles and relatively simple genomes, appear to
be preferential experimental models for ecology and evolution. Let ecologists and evolutionists
seize the weeds!
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